Solutions to Integrals Involving the Marcum -Function and Applications

نویسندگان

  • Paschalis C. Sofotasios
  • Sami Muhaidat
  • George K. Karagiannidis
  • Bayan S. Sharif
چکیده

Novel analytic solutions are derived for integrals that involve the generalizedMarcum -function, exponential functions and arbitrary powers. Simple closed-form expressions are also derived for specific cases of the generic integrals. The offered expressions are both convenient and versatile, which is particularly useful in applications relating to natural sciences and engineering, including wireless communications and signal processing. To this end, they are employed in the derivation of the average probability of detection in energy detection of unknown signals over multipath fading channels as well as of the channel capacity with fixed rate and channel inversion in the case of correlated multipath fading and switched diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions to Integrals Involving the Marcum Q-Function and Applications

Novel analytic solutions are derived for integrals that involve the generalized Marcum Q−function, exponential functions and arbitrary powers. Simple closed-form expressions are also derived for specific cases of the generic integrals. The offered expressions are both convenient and versatile, which is particularly useful in applications relating to natural sciences and engineering, including w...

متن کامل

Solutions to the Incomplete Toronto Function and Incomplete Lipschitz-Hankel Integrals

This paper provides novel analytic expressions for the incomplete Toronto function, TB(m,n, r), and the incomplete Lipschitz-Hankel Integrals of the modified Bessel function of the first kind, Iem,n(a, z). These expressions are expressed in closed-form and are valid for the case that n is an odd multiple of 1/2, i.e. n±0.5 ∈ N. Capitalizing on these, tight upper and lower bounds are subsequentl...

متن کامل

Closed-Form Bounds to the Rice and Incomplete Toronto Functions and Incomplete Lipschitz-Hankel Integrals

This article provides novel analytical results for the Rice function, the incomplete Toronto function and the incomplete Lipschitz-Hankel Integrals. Firstly, upper and lower bounds are derived for the Rice function, Ie(k, x). Secondly, explicit expressions are derived for the incomplete Toronto function, TB(m,n, r), and the incomplete Lipschitz-Hankel Integrals of the modified Bessel function o...

متن کامل

Integrals involving complete elliptic integrals

We give a closed-form evaluation of a number of Erd elyi-Kober fractional integrals involving elliptic integrals of the rst and second kind, in terms of the 3F2 generalized hypergeometric function. Reduction formulae for 3F2 enable us to simplify the solutions for a number of particular cases. c © 1999 Elsevier Science B.V. All rights reserved.

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015